IEA Bioenergy

The physical and thermochemical properties of the feedstock influence the quality of the producer gas, and therefore, play a decisive role on the selection of the gasification technology. Biomass has special characteristics that affect the whole conversion process (pre-treatment, gasification, and gas cleaning system).

BIOMASS AS GASIFICATION FEEDSTOCK

Feedstock properties influencing the gasification process.

piomass

Main properties of biomass

- High moisture content (hydrophilic).
- Low bulk density, high porosity.
- Fibrous nature (low friability).
- Chemical composition: high volatile content, low fixed carbon.
- Lower C and higher O content than coal → lower heating value.
- Low N, S, and Cl content.
- Lower ash content than coal, with lower melting point and very aggressive in molten state.
- Higher content in alkaline metals (Na, K) than coal.

BIOMASS PRE-TREATMENT OPTIONS FOR ENTRAINED-FLOW GASIFICATION.

- Torrefaction: mild pyrolysis at 200-300°C.
 Biomass is transformed in a hydrophobic solid material easier to grind, pelletize and transport.
 Thermal efficiency > 90%.
- Flash pyrolysis: solid biomass is transformed into a liquid bio-oil (efficiency < 70%), which can be further pumped and fed into the gasifier. Bio-oil can be also mixed with char to form slurry (efficiency ~ 90%).

Woody biomass Herbaceous biomass

- Higher density.
- Lower ash content. (dependent on bark content).
- Higher ash melting point (> 1000°C).
- Examples: straw, miscanthus, rice husk.
- Lower density.
- Fibrous (lower friability).
- Higher content of Cl and S.
- Higher ash content.
- Lower ash melting point (< 700°C).

More info: www.phyllis.nl

Requirements for different gasification technologies

Type of gasifier	Fuel specifications
Fixed/moving bed	 Fuel particle size: 1 – 10 cm. Mechanically stable fuel particles (unblocked passage of gas through the bed). Pellets or briquettes as preferred option. Updraft configuration more tolerant to biomass moisture content (up to 40-50%) because drying occurs as biomass moves down the gasifier.
Fluidised bed	 Ash melting temperature of fuel: higher limit for operating temperature. Fuel particle size relatively small to ensure good contact with bed material. Generally < 80 mm for BFB and < 40 mm for CFB gasifiers. Good fuel flexibility due to high thermal inertia of the bed.
Entrained-flow	 Fuel particle size: ~ 50 μm (pulverized for high fuel conversion in short residence times). Low moisture content required. Attention to ash melting behaviour for reactor/process design.

OVERVIEW OF INFLUENCE OF BIOMASS PROPERTIES ON THE GASIFICATION SYSTEM

Biomass properties I		Impact on gasification system
Physical	High moisture content (hygroscopic)	 Decrease in heating value of fuel. Storage durability. Fuel transportation costs. Lower process temperature. Reduction in producer gas quality, gasification efficiency and fuel conversion. Optimal moisture content for gasification: 10-15% wt.
	Low apparent density Shape and distribution of particle size	 Energy density (→ transportation, storage and handling costs). Feeding system. Transport and feeding system. Gasification technology.
	Low friability Porosity / specific surface area / distribution of pore size	 Reactivity of fuel. Fuel pre-treatment and feeding (entrained-flow gasifiers). Reactivity of fuel.
	Cellulose, hemicellulose and lignin content Ultimate analysis	Reactivity of fuel. Heating value of fuel.
ochemical	- C, H, O content - N content	 Fate of fuel-bound N during gasification: mainly transformed into NH₃ and HCN → design of gas cleaning section. Emissions.
	- S content	 Fate of fuel-bound S during gasification: mainly transformed into H₂S and COS. → design of gas cleaning section. Interaction with alkali metals: emissions, deposits, corrosion. Deactivation of downstream catalysts.
	- Cl content	 Decrease of softening temperature of ash. Enhancement mobility of K (→ deposition and agglomeration). Emissions, corrosion and ash sintering.
oche	High volatile content, low fixed carbon content	• Reactivity of fuel.
Therm	Ash content	 Decrease of fuel heating value. Energy density: transportation costs. Emissions. Ash disposal costs. Design of equipment (grates, heat exchangers, gas cleaning).
	Ash composition	 Ash-melting behaviour (softening and melting temperatures) > deposition, agglomeration, fouling.
	- Na and K content	 Involved in ash deposition and formation of deposits. Lowering of ash melting temperatures. Formation of eutectics. Reaction with Si and S: deposition, agglomeration, fouling, corrosion. Ash valorisation.
	- Mg, P, Ca content	 Increase of ash melting temperature. Ash disposal applications.
	- Heavy metals	 Emissions. Ash disposal costs, ash applications.