IEA Bioenergy The physical and thermochemical properties of the feedstock influence the quality of the producer gas, and therefore, play a decisive role on the selection of the gasification technology. Biomass has special characteristics that affect the whole conversion process (pre-treatment, gasification, and gas cleaning system). ## **BIOMASS AS GASIFICATION FEEDSTOCK** Feedstock properties influencing the gasification process. ## piomass #### Main properties of biomass - High moisture content (hydrophilic). - Low bulk density, high porosity. - Fibrous nature (low friability). - Chemical composition: high volatile content, low fixed carbon. - Lower C and higher O content than coal → lower heating value. - Low N, S, and Cl content. - Lower ash content than coal, with lower melting point and very aggressive in molten state. - Higher content in alkaline metals (Na, K) than coal. ## BIOMASS PRE-TREATMENT OPTIONS FOR ENTRAINED-FLOW GASIFICATION. - Torrefaction: mild pyrolysis at 200-300°C. Biomass is transformed in a hydrophobic solid material easier to grind, pelletize and transport. Thermal efficiency > 90%. - Flash pyrolysis: solid biomass is transformed into a liquid bio-oil (efficiency < 70%), which can be further pumped and fed into the gasifier. Bio-oil can be also mixed with char to form slurry (efficiency ~ 90%). ### Woody biomass Herbaceous biomass - Higher density. - Lower ash content. (dependent on bark content). - Higher ash melting point (> 1000°C). - Examples: straw, miscanthus, rice husk. - Lower density. - Fibrous (lower friability). - Higher content of Cl and S. - Higher ash content. - Lower ash melting point (< 700°C). More info: www.phyllis.nl #### Requirements for different gasification technologies | Type of gasifier | Fuel specifications | |------------------|---| | Fixed/moving bed | Fuel particle size: 1 – 10 cm. Mechanically stable fuel particles (unblocked passage of gas through the bed). Pellets or briquettes as preferred option. Updraft configuration more tolerant to biomass moisture content (up to 40-50%) because drying occurs as biomass moves down the gasifier. | | Fluidised bed | Ash melting temperature of fuel: higher limit for operating temperature. Fuel particle size relatively small to ensure good contact with bed material. Generally < 80 mm for BFB and < 40 mm for CFB gasifiers. Good fuel flexibility due to high thermal inertia of the bed. | | Entrained-flow | Fuel particle size: ~ 50 μm (pulverized for high fuel conversion in short residence times). Low moisture content required. Attention to ash melting behaviour for reactor/process design. | # OVERVIEW OF INFLUENCE OF BIOMASS PROPERTIES ON THE GASIFICATION SYSTEM | Biomass properties I | | Impact on gasification system | |----------------------|---|---| | Physical | High moisture content (hygroscopic) | Decrease in heating value of fuel. Storage durability. Fuel transportation costs. Lower process temperature. Reduction in producer gas quality, gasification efficiency and fuel conversion. Optimal moisture content for gasification: 10-15% wt. | | | Low apparent density Shape and distribution of particle size | Energy density (→ transportation, storage and handling costs). Feeding system. Transport and feeding system. Gasification technology. | | | Low friability Porosity / specific surface area / distribution of pore size | Reactivity of fuel. Fuel pre-treatment and feeding (entrained-flow gasifiers). Reactivity of fuel. | | | Cellulose, hemicellulose and lignin content Ultimate analysis | Reactivity of fuel. Heating value of fuel. | | ochemical | - C, H, O content
- N content | Fate of fuel-bound N during gasification: mainly transformed into NH₃ and HCN → design of gas cleaning section. Emissions. | | | - S content | Fate of fuel-bound S during gasification: mainly transformed into H₂S and COS. → design of gas cleaning section. Interaction with alkali metals: emissions, deposits, corrosion. Deactivation of downstream catalysts. | | | - Cl content | Decrease of softening temperature of ash. Enhancement mobility of K (→ deposition and agglomeration). Emissions, corrosion and ash sintering. | | oche | High volatile content, low fixed carbon content | • Reactivity of fuel. | | Therm | Ash content | Decrease of fuel heating value. Energy density: transportation costs. Emissions. Ash disposal costs. Design of equipment (grates, heat exchangers, gas cleaning). | | | Ash composition | Ash-melting behaviour (softening and melting temperatures) > deposition, agglomeration, fouling. | | | - Na and K content | Involved in ash deposition and formation of deposits. Lowering of ash melting temperatures. Formation of eutectics. Reaction with Si and S: deposition, agglomeration, fouling, corrosion. Ash valorisation. | | | - Mg, P, Ca content | Increase of ash melting temperature. Ash disposal applications. | | | - Heavy metals | Emissions. Ash disposal costs, ash applications. |